Series 7000 Application Guide

Control Sequences

Single Duct, Constant Volume and Static Pressure
- SD7000
- SD7001
- SD7100
- SD7101
- SD7600
- SD7606, SD7607
- Other Single Duct Sequences

Dual Duct Variable Air Volume
- DD7100
- Other Dual Duct Sequences

Series Flow Fan Powered (Continuous Fan)
- FC7001
- FC7101
- FC7201
- FC7401
- Other Series Flow Fan Powered Sequences

Parallel Flow Fan Powered (Intermittent Fan)
- FV7001
- FV7101
- FV7201
- FV7401
- Other Parallel Flow Fan Powered Sequences

Cross Reference Guide

Application Notes

Drawings in this catalog are subject to change without notice.
Visit the ENVIRO-TEC® website at www.enviro-tec.com for current sequence drawings.
SD7000

This application provides single duct variable air volume cooling. As space temperature drops, airflow is reset from maximum to minimum setpoint. Air volume limits are located at the thermostat.

SD7000

![Diagram of SD7000 sequence]

Controller Assy. Model: ETPX0

1. Minimum 10 VA
2. Wire terminal 3 to terminal 1 in the field
3. See order acknowledgement for optional item requirements

Component Labels:
- ETPM7: Electronic Pressure Independent Controller
- ETS5AW: 2" Square Low Profile Electronic Thermostat
- JCI Actuator: M9104-I9A-3S

Legend:
- Factory tubing
- Field wiring
- Factory wiring

Johnson Controls
This application provides single duct variable air volume cooling with up to three stages of electric or hot water reheat and dual minimum setpoints. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, airflow is reset to a higher setpoint and reheat is energized in stages to satisfy the load. Air volume limits are located at the thermostat.

Controller Assy. Model: ETPXN

1. Minimum 40 VA
2. Maximum 10 VA holding coil
3. Energized 2' F below setpoint
4. Energized 3' F below setpoint
5. Energized 4' F below setpoint
6. If Electric heat is provided, transformer and disconnect are located in the heater enclosure and transformer primary voltage is dependent on heater line voltage requirement.
7. If hot water reheat is used, field wiring is required.
8. Wire terminal 3 to terminal 1 in the field
9. If dual minimums are not desired, wire from terminal 4 of ET5SAW to terminal 4 of ETPH3 is not required
10. If Electric heat is not provided, see order acknowledgement for optional items requirements

SD7001

SERIES 7000 • SINGLE DUCT SEQUENCES

MAXIMUM COOLING

S.P. - SETPOINT

S.P.

SPACE TEMPERATURE

COLD AIR

HOT WATER VALVE OR 1ST STAGE ENERGIZED

2ND STAGE ENERGIZED

3RD STAGE ENERGIZED

AIR FLOW

HEATING MINIMUM

COOLING MINIMUM

COLD ROOM

SPACE TEMPERATURE

HOT ROOM

2" SQUARE LOW PROFILE ELECTRONIC THERMOSTAT

ETST5AW

ETPM7

ELECTRONIC PRESSURE INDEPENDENT CONTROLLER

DISCONNECT SWITCH (OPTIONAL)

TRANSFORMER (OPTIONAL)
This application provides single duct variable air volume cooling with summer/winter changeover and/or morning warm up. As space temperature drops, airflow is reset from maximum to minimum setpoint. Warm air is sensed by an electronic duct sensor causing the sequence to reverse for changeover or morning warm up. Air volume limits are located at the thermostat.
This application provides single duct variable air volume cooling with up to three stages of electric or hot water reheat, summer/winter changeover and/or morning warm up, and dual minimum setpoints. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, airflow is reset to a higher setpoint and reheat is energized in stages to satisfy the load. Warm air is sensed by an electronic duct sensor causing the sequence to reverse for changeover or morning warm up (reheat is disabled). Air volume limits are located at the thermostat.

CAUTION:
Failure to remove jumper from terminal 3 will cause serious damage to controller.

*2" square low profile electronic thermostat

ETST5AW

1. Minimum 40 VA
2. Maximum 10 VA holding coil
3. Energized 2" F below setpoint
4. Energized 3" F below setpoint
5. Energized 4" F below setpoint
6. If electric heat is provided, transformer and disconnect are located in the heater enclosure and transformer primary voltage is dependent on heater line voltage requirement
7. If hot water reheat is used, field wiring is required.
8. Remove jumper on terminal 3 before installation.
9. If dual minimums are not desired, wire from terminal 4 of ETST5AW to terminal 4 of ETPH3 is not required.
10. If electric heat is not provided, see order acknowledgement for optional items requirements.
This application provides single duct dual flow constant volume cooling. A contact closure input is provided to close the damper. Air volume limit is located at the controller.

CONTROLLE ASSY. MODEL: ETPXVC

1. **MINIMUM 10 VA**
2. CLOSE CONTACT FOR AUXILIARY CONSTANT VOLUME
3. CLOSE CONTACT TO CLOSE DAMPER
4. ADJUST POTentiOMETER LABLED "AUX" TO SET CONSTANT VOLUME
5. ADJUST POTentiOMETER LABLED "MIN" TO SET AUXILIARY CONSTANT VOLUME
6. SEE ORDER ACKNOWLEDGE FOR OPTIONAL ITEM REQUIREMENTS

FACTORY TUBING

FIELD WIRING

FACTORY WIRING
These applications provide static pressure control. The static pressure limit (field adjustable) is located on the controller. As static pressure in the main duct increases, the relief damper opens to bypass airflow to the return plenum, thus maintaining static pressure.

SD7606 CONTROLLER ASSY. MODEL: ETPXVC
SD7607 CONTROLLER ASSY. MODEL: ETPXV1

<table>
<thead>
<tr>
<th>APPLICATION NUMBER</th>
<th>CONTROLLER MODEL</th>
<th>PRESSURE CONTROL RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD7606</td>
<td>ETPM7</td>
<td>0.1–1.0 INWG</td>
</tr>
<tr>
<td>SD7607</td>
<td>ETPM7–2</td>
<td>0.5–2.0 INWG</td>
</tr>
</tbody>
</table>

1. MINIMUM 10 VA
2. MOUNTED (BY OTHERS) AT LOCATION WHERE STATIC PRESSURE IS TO BE SENSED
3. PROPER LOCATION IS IMPORTANT AND OFTEN REQUIRES TRIAL AND ERROR PROBE CANNOT BE REMOTELY MOUNTED FROM CONTROLLER
4. WIRE NUT
5. ADJUST POTENTIOMETER LABELED “AUX” TO SET STATIC PRESSURE
6. SEE ORDER FOR OPTIONAL ITEM REQUIREMENTS

1 TERMINAL STRIP
2 WHITE
3 BLUE
4 YELLOW
5 BLACK
6 BLACK

CONNECTOR 62034-060

FACTORY TUBING
FIELD WIRING
FACTORY WIRING
OTHER SINGLE DUCT CONTROL SEQUENCES

(See ENVIRO-TEC® submittal data for additional information on the sequences below).

SD7003: This application provides single duct variable air volume cooling with proportional modulating hot water reheat and dual minimum setpoints. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, airflow is reset to a higher setpoint and reheat is modulated to satisfy the load. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPHM1 (Heat/Fan Module [Red]).

SD7004: This application provides single duct variable air volume cooling with floating modulating hot water reheat and dual minimum setpoints. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, airflow is reset to a higher setpoint and reheat is modulated to satisfy the load. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPHM2 (Heat/Fan Module [Red]).

SD7005: This application provides single duct variable air volume cooling with proportional modulating electric (SSR) reheat and dual minimum setpoints. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, airflow is reset to a higher setpoint and reheat is modulated to satisfy the load. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPHM3 (Heat/Fan Module [Red]).

SD7103: This application provides single duct variable air volume cooling with proportional modulating hot water reheat, summer/winter changeover and/or morning warm up. As space temperature drops, airflow is reset from maximum to minimum setpoint. Warm air is sensed by an electronic duct sensor causing the sequence to reverse for changeover or morning warm up (reheat is disabled). Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPCO (Setback/Warm up Module [Green]) and the ETPHM1 (Heat/Fan Module [Red]).

SD7104: This application provides single duct variable air volume cooling with floating modulating hot water reheat, summer/winter changeover and/or morning warm up and dual heating minimum setpoints. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, airflow is reset to a higher setpoint and reheat is modulated to satisfy the load. Warm air is sensed by an electronic duct sensor causing the sequence to reverse for changeover or morning warm up (reheat is disabled). Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPCO (Setback/Warm up Module [Green]) and the ETPHM2 (Heat/Fan Module [Red]).

SD7105: This application provides single duct variable air volume cooling with proportional modulating electric (SSR) reheat, summer/winter changeover and/or morning warm up and dual heating minimum setpoints. As space temperature drops, airflow is reset from maximum to minimum setpoint. Warm air is sensed by an electronic duct sensor causing the sequence to reverse for changeover or morning warm up (reheat is disabled). Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPCO (Setback/Warm up Module [Green]) and the ETPHM3 (Heat/Fan Module [Red]).

SD7300: This application provides single duct variable air volume cooling with morning warm up. As space temperature drops, airflow is reset from maximum to minimum setpoint. Warm air is sensed by an electronic duct sensor causing the air valve to open to maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and ETPW (Setback/Warm up Module [Green]).

SD7301: This application provides single duct variable air volume cooling with up to three stages of electric reheat (On/Off) or hot water reheat (two-position), morning warm up and dual heating minimum setpoints. As space temperature drops, airflow is reset
from maximum to minimum setpoint. As space temperature continues to drop, airflow is reset to a higher setpoint and reheat is energized in stages to satisfy the load. Warm air is sensed by an electronic duct sensor causing the air valve to open to maximum airflow setpoint for morning warm up (reheat is disabled). Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPH3 (Heat/Fan Module [Red]).

SD7303: This application provides single duct variable air volume cooling with modulating hot water reheat, morning warm up and dual heating minimum setpoints. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, airflow is reset to a higher setpoint and reheat is modulated to satisfy the load. Warm air is sensed by an electronic duct sensor causing the air valve to open to maximum airflow setpoint for morning warm up (reheat is disabled). Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPHM1 (Heat/Fan Module [Red]).

SD7304: This application provides single duct variable air volume cooling with floating modulating hot water reheat, morning warm up and dual heating minimum setpoints. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, airflow is reset to a higher setpoint and reheat is modulated to satisfy the load. Warm air is sensed by an electronic duct sensor causing the air valve to open to maximum airflow setpoint for morning warm up (reheat is disabled). Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPHM2 (Heat/Fan Module [Red]).

SD7305: This application provides single duct variable air volume cooling with proportional modulating electric (SSR) reheat, morning warm up and dual heating minimum setpoints. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, airflow is reset to a higher setpoint and reheat is modulated to satisfy the load. Warm air is sensed by an electronic duct sensor causing the air valve to open to maximum airflow setpoint for morning warm up (reheat is disabled). Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPHM3 (Heat/Fan Module [Red]).
This application provides dual duct constant or variable volume discharge control. When the space temperature is warm, the cold damper maintains maximum cooling setpoint while the hot damper maintains minimum heating airflow setpoint. As the space temperature drops, the cold damper modulates closed while the hot damper opens. As the space temperature continues to fall, the cold damper maintains minimum cooling airflow setpoint and the hot damper maintains maximum heating airflow setpoint. Airflow limits for the cold deck are located on the ETPUC module. Total airflow limit is located on the ETPCV2 module. Heating minimum airflow limit is set by the difference in cold deck maximum and total airflow limits.
This application provides dual duct variable volume discharge controls. When space temperature is warm, the cold air valve maintains maximum cooling airflow setpoint while the hot air valve remains closed. As space temperature drops, the cold air valve modulates to its minimum airflow setpoint while the hot air valve opens to maintain the minimum total airflow setpoint. As space temperature continues to drop, the cold air valve maintains minimum cooling airflow setpoint while the hot air valve maintains maximum heating airflow setpoint. Maximum and minimum cooling airflow limits are located on the ETPUC cold deck module. Maximum heating airflow setpoint adjustment, minimum total airflow setpoint adjustment and mixing band adjustment are located on the ETPUH hot deck module (minimum heating airflow setpoint is always zero).

1. MINIMUM 20 VA
This application applies to Series Flow fan powered terminals providing up to two stages of electric or hot water heat. The unit fan draws either cold primary air or warm plenum air to satisfy the load. If plenum air fails to maintain setpoint, heat is energized in stages to satisfy the load. When system air is failed, the primary air valve closes and the unit fan and heat are deenergized for night operation. Air volume limits are located at the thermostat.

Controller Assy. Model: ETPXNFY

1. Minimum 40 VA
2. If electric heat is provided, transformer and fan relay are located in heater enclosure—refer to heater wiring diagram. Otherwise, refer to fan wiring diagram for transformer and relay wiring, and other high voltage wiring.
3. Maximum 10 VA holding coil
4. Energized 2°F below setpoint
5. Energized 3°F below setpoint
6. If hot water heat is used, field wiring is required.
7. Wire terminal 3 to terminal 1 in the field
This application applies to Series Flow fan powered terminals providing summer/winter changeover and/or morning warm up and up to two stages of electric or hot water heat. The unit fan draws either cold primary air or warm plenum air to satisfy the load. If plenum air fails to maintain setpoint, heat is energized in stages to satisfy the load. Warm air is sensed by an electronic duct sensor, causing the primary air valve to reverse operation for changeover or morning warm up (heat is deenergized). When system air is failed, the primary air valve closes and the unit fan and heat are deenergized for night operation. Air volume limits are located at the thermostat.

Notes:
- **CAUTION:** Failure to remove jumper from terminal 3 will cause serious damage to controller.
- **2” square low profile electronic thermostat**
- **ETST5AW**
- **ETPCO**
- **ETPFH2**
- **ETPM7**
- **JCI ACTUATOR M9104-IA-3S**

Controller Assy. Model: ETPXNFYWD
1. Minimum 40 VA
2. If electric heat is provided, transformer and fan relay are located in heater enclosure—refer to heater wiring diagram. Otherwise, refer to fan wiring diagram for transformer and relay wiring, and other high voltage wiring.
3. Maximum 10 VA holding coil
4. Energized 2°F below setpoint
5. Energized 3°F below setpoint
6. If hot water heat is used, field wiring is required.
7. Remove jumper on terminal 3 before installation.

Johnson Controls

Series 7000 • Series Flow Fan Powered

FC7101
This application applies to Series Flow fan powered terminals providing up to two stages of electric or hot water heat and night setback. The unit fan draws either cold primary air or warm plenum air to satisfy the load. If plenum air fails to maintain setpoint, heat is energized in stages to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. Air volume limits are located at the thermostat.

1 MINIMUM 40 VA
2 IF ELECTRIC HEAT IS PROVIDED, TRANSFORMER AND FAN RELAY ARE LOCATED IN HEATER ENCLOSURE—REFER TO HEATER WIRING DIAGRAM. OTHERWISE, REFER TO FAN WIRING DIAGRAM FOR TRANSFORMER AND RELAY WIRING, AND OTHER HIGH VOLTAGE WIRING.
3 MAXIMUM 10 VA HOLDING COIL
4 ENERGIZED 2°F BELOW SETPOINT
5 ENERGIZED 3°F BELOW SETPOINT
6 IF HOT WATER HEAT IS USED, FIELD WIRING IS REQUIRED.
7 WIRE TERMINAL 3 TO TERMINAL 1 IN THE FIELD
This application applies to Series Flow fan powered terminals providing up to two stages of electric or hot water heat, night setback and morning warm up. The unit fan draws either cold primary air or warm plenum air to satisfy the load. If plenum air fails to maintain setpoint, heat is energized in stages to satisfy the load. When system air is failed the unit automatically switches into the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. Warm air is sensed by the electronic duct sensor causing the primary air valve to open to the maximum airflow setpoint for morning warm up (heat is deenergized). Air volume limits are located at the thermostat.

Controller Assy. Model: ETPXNFBWD

1. Minimum 40 VA
2. If electric heat is provided, transformer and fan relay are located in heater enclosure—refer to heater wiring diagram. Otherwise, refer to fan wiring diagram for transformer and relay wiring, and other high voltage wiring.
3. Maximum 10 VA holding coil
4. Energized 2°F below setpoint
5. Energized 3°F below setpoint
6. If hot water heat is used, field wiring is required.
7. Wire terminal 3 to terminal 1 in the field
SERIES FLOW FAN POWERED
(See ENVIRO-TEC® submittal data for additional information on the sequences below).

FC7002: This application applies to Series Flow Fan Powered Terminals providing fan and three stages of electric heat (On/Off). The unit fan draws either cold primary air or warm plenum air to satisfy the load. If plenum air fails to maintain setpoint, heat is energized in stages to satisfy the load. When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPFH3 (Heat/Fan Module [Red]).

FC7003: This application applies to Series Flow Fan Powered Terminals providing proportional modulating hot water heat. The unit fan draws either cold primary air or warm plenum air to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPFH3 (Heat/Fan Module [Red]).

FC7004: This application applies to Series Flow Fan Powered Terminals providing floating modulating hot water heat. The unit fan draws either cold primary air or warm plenum air to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPFH3 (Heat/Fan Module [Red]).

FC7005: This application applies to Series Flow Fan Powered Terminals providing proportional modulating electric (SSR) heat. The unit fan draws either cold primary air or warm plenum air to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPFH3 (Heat/Fan Module [Red]).

FC7102: This application applies to Series Flow Fan Powered Terminals providing fan and three stages of electric heat (On/Off), summer/winter changeover and/or morning warm up. The unit fan draws either cold primary air or warm plenum air to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. Warm air is sensed by an electronic duct sensor causing the primary air valve to reverse operation for changeover or morning warm up (heat is de-energized). When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPCO (Setback/Warm up Module [Green]) and the ETPFH3 (Heat/Fan Module [Red]).

FC7103: This application applies to Series Flow Fan Powered Terminals providing proportional modulating hot water heat, summer/winter changeover and/or morning warm up. The unit fan draws either cold primary air or warm plenum air to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. Warm air is sensed by an electronic duct sensor causing the primary air valve to reverse operation for changeover or morning warm up (heat is de-energized). When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETFCO (Setback/Warm up Module [Green]) and the ETPFH1 (Heat/Fan Module [Red]).

FC7104: This application applies to Series Flow Fan Powered Terminals providing floating modulating hot water heat, summer/winter changeover and/or morning warm up. The unit fan draws either cold primary air or warm plenum air to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. Warm air is sensed by an electronic duct sensor causing the primary air valve to reverse operation for changeover or morning warm up (heat is de-energized). When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPCO (Setback/Warm up Module [Green]) and the ETPFHM2 (Heat/Fan Module [Red]).

FC7105: This application applies to Series Flow Fan Powered Terminals providing proportional modula-
Series 7000 • Series Flow Fan Powered

ing electric (SSR) heat, summer/winter changeover and/or morning warm up. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. Warm air is sensed by an electronic duct sensor causing the primary air valve to reverse operation for changeover or morning warm up (heat is de-energized). When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPCO (Setback/Warm up Module [Green]) and the ETPFH3 (Heat/Fan Module [Red]).

FC7202: This application applies to Series Flow Fan Powered Terminals providing fan and three stages of electric heat (On/Off). The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPSB (Setback/Warm up Module [Green]) and the ETPFH3 (Heat/Fan Module [Red]).

FC7203: This application applies to Series Flow Fan Powered Terminals providing proportional modulating hot water heat and night setback. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPSB (Setback/Warm up Module [Green]) and the ETPFH1 (Heat/Fan Module [Red]).

FC7204: This application applies to Series Flow Fan Powered Terminals providing floating modulating hot water heat and night setback. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPSB (Setback/Warm up Module [Green]) and the ETPFH2 (Heat/Fan Module [Red]).

FC7205: This application applies to Series Flow Fan Powered Terminals providing proportional modulating electric (SSR) heat and night setback. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPSB (Setback/Warm up Module [Green]) and the ETPFH3 (Heat/Fan Module [Red]).

FC7301: This application applies to Series Flow Fan Powered Terminals providing fan and up to two stages of electric heat (On/Off) or hot water heat (two-position) and morning warm up. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is energized in stages to satisfy the load. Warm air is sensed by an electronic duct sensor causing the air valve to open to maximum airflow setpoint for morning warm up (heat is de-energized). When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPFH2 (Heat/Fan Module [Red]).

FC7302: This application applies to Series Flow Fan Powered Terminals providing fan and three stages of electric heat (On/Off). The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is energized in stages to satisfy the load. Warm air is sensed by an electronic duct sensor causing the air valve to open to maximum airflow setpoint for morning warm up (heat is de-energized). When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPFH3 (Heat/Fan Module [Red]).

FC7303: This application applies to Series Flow Fan Powered Terminals providing proportional modulating hot water heat and morning warm up. The unit fan draws either cold primary air or warm plenum
and heat are cycled to maintain the night offset. Warm air is sensed by an electronic duct sensor causing the air valve to open to maximum airflow setpoint for morning warm up (heat is de-energized). When system air is failed, the primary air valve closes and the unit fan and heat are de-energized for night operation. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPWSB (Setback/Warm up Module [Green]) and the ETPFH3 (Heat/Fan Module [Red]).

FC7403: This application applies to Series Flow Fan Powered Terminals providing proportional modulating hot water heat, morning warm up and night setback. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Warm air is sensed by an electronic duct sensor causing the primary air valve to open to maximum airflow setpoint for morning warm up (heat is de-energized)Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPWSB (Setback/Warm up Module [Green]) and the ETPFH3 (Heat/Fan Module [Red]).

FC7404: This application applies to Series Flow Fan Powered Terminals providing floating modulating hot water heat, morning warm up and night setback. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Warm air is sensed by an electronic duct sensor causing the primary air valve to open to maximum airflow setpoint for morning warm up (heat is de-energized)Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPWSB (Setback/Warm up Module [Green]) and the ETPFH2 (Heat/Fan Module [Red]).

FC7405: This application applies to Series Flow Fan Powered Terminals providing floating modulating electric (SSR) heat, morning warm up and night setback. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Warm air is sensed by an electronic duct sensor causing the primary air valve to open to maximum airflow setpoint for morning warm up (heat is de-energized)Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPWSB (Setback/Warm up Module [Green]) and the ETPFH2 (Heat/Fan Module [Red]).
primary air valve to open to maximum airflow set-point for morning warm up (heat is de-energized). Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPWSB (Setback/Warm up Module [Green]) and the ETPFHM3 (Heat/Fan Module [Red]).

FC7501: This application applies to Series Flow Fan Powered Terminals providing fan and up to two stages of electric heat (On/Off) or hot water heat (two-position), night setback, summer/winter changeover and/or morning warm up. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is energized in stages to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Warm air is sensed by an electronic duct sensor causing the primary air valve to reverse operation for changeover or morning warm up (heat is de-energized). Air volume limits are located on the ETPECO module. Uses ETPM7 (Master Controller), ETPECO (Flow Control Module [Blue]), ETPCOSB (Setback/Warm up Module [Green]) and the ETPFH2 (Heat/Fan Module [Red]).

FC7502: This application applies to Series Flow Fan Powered Terminals providing fan and three stages of electric heat (On/Off), night setback, summer/winter changeover and/or morning warm up. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is energized in stages to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closes and the unit fan and heat are cycled to maintain the night offset. Warm air is sensed by an electronic duct sensor causing the primary air valve to reverse operation for changeover or morning warm up (heat is de-energized). Air volume limits are located on the ETPECO module. Uses ETPM7 (Master Controller), ETPECO (Flow Control Module [Blue]), ETPCOSB (Setback/Warm up Module [Green]) and the ETPFH2 (Heat/Fan Module [Red]).

FC7503: This application applies to Series Flow Fan Powered Terminals providing proportional modulating hot water heat, night setback, summer/winter changeover and/or morning warm up. The unit fan draws either cold primary air or warm plenum air valve to satisfy the load. If plenum air fails to maintain setpoint, heat is modulated to satisfy the load. When system air is failed, the unit automatically switch-
This application provides intermittent fan powered terminals providing up to two stages of electric or hot water heat. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized, thus supplying plenum air to the space. On a further drop in space temperature heat is energized in stages to satisfy the load. Air volume limits are located at the thermostat.

1. Minimum 40 VA
2. If electric heat is provided, transformer and fan relay are located in heater enclosure—refer to heater wiring diagram. Otherwise, refer to fan wiring diagram for transformer and relay wiring, and other high voltage wiring.
3. Maximum 10 VA holding coil
4. Energized 1° F below setpoint
5. Energized 2° F below setpoint
6. Energized 3° F below setpoint
7. If hot water heat is used, field wiring is required.
8. Wire terminal 3 to terminal 1 in the field

--- FACTORY TUBING
--- FIELD WIRING
--- FACTORY WIRING
This application provides intermittent fan powered variable air volume control with up to two stages of electric or hot water heat and summer/winter changeover and/or morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When warm air is sensed by an electronic duct sensor, the unit fan and heat are deenergized and the primary air valve reverses operation for changeover or morning warm up. Air volume limits are located at the thermostat.

Controller Assy. Model: ETPXNCD

1. **Minimum 40 VA**
2. **If electric heat is provided, transformer and fan relay are located in heater enclosure—refer to heater wiring diagram. Otherwise, refer to fan wiring diagram for transformer and relay wiring, and other high voltage wiring.**
3. **Maximum 10 VA holding coil**
4. **Energized 1° F below setpoint**
5. **Energized 2° F below setpoint**
6. **Energized 3° F below setpoint**
7. **If hot water heat is used, field wiring is required.**
8. **Remove jumper from terminal 3 before installation.**

CAUTION:
Failure to remove jumper from terminal 3 will cause serious damage to controller.

2" Square Low Profile Electronic Thermostat

ETST5AW

Factory Tubing
Field Wiring
Factory Wiring
This application provides intermittent fan powered variable air volume control with up to two stages of electric or hot water heat and night setback. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When system air is failed, the unit automatically switches into the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. Air volume limits are located at the thermostat.

CONTROLLER ASSY. MODEL: ETPXNFTB

1. **MINIMUM 40 VA**
2. **IF ELECTRIC HEAT IS PROVIDED, TRANSFORMER AND FAN RELAY ARE LOCATED IN HEATER ENCLOSURE—REFER TO HEATER Wiring Diagram. OTHERWISE, REFER TO FAN Wiring DIAGRAM FOR TRANSFORMER AND RELAY Wiring, AND OTHER HIGH VOLTAGE Wiring.**
3. **MAXIMUM 10 VA HOLDING COIL**
4. **ENERGIZED 1° F BELOW SETPOINT**
5. **ENERGIZED 2° F BELOW SETPOINT**
6. **ENERGIZED 3° F BELOW SETPOINT**
7. **IF HOT WATER HEAT IS USED, FIELD Wiring IS REQUIRED.**
8. **WIRE TERMINAL 3 TO TERMINAL 1 IN THE FIELD**
This application provides intermittent fan powered variable air volume control with up to two stages of electric or hot water heat, night setback and morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When system air is failed, the unit automatically switches into the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. When warm air is sensed by an electronic duct sensor, the unit fan and heat are deenergized and the primary air valve opens to the maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat.
OTHER PARALLEL FLOW FAN POWERED CONTROL SEQUENCES
(See ENVIRO-TEC® submittal data for additional information on the sequences below).

FV7002: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with three stages of electric heat (On/Off). As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPH4 (Heat/Fan Module [Red]).

FV7003: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating hot water heat. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPFVHM1 (Heat/Fan Module [Red]).

FV7004: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with floating modulating hot water heat. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPFVHM2 (Heat/Fan Module [Red]).

FV7005: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating electric (SSR) heat. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller) and the ETPFVHM3 (Heat/Fan Module [Red]).

FV7102: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with three stages of electric heat (On/Off), summer/winter changeover and/or morning warm up. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve reverses operation for changeover or morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPCO (Setback/Warm up Module [Green]) and the ETPH4 (Heat/Fan Module [Red]).

FV7103: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating hot water heat, summer/winter changeover and/or morning warm up. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve reverses operation for changeover or morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPCO (Setback/Warm up Module [Green]) and the ETPFVHM1 (Heat/Fan Module [Red]).

FV7104: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with floating modulating hot water heat, summer/winter changeover and/or morning warm up. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is ener-
gized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve reverses operation for changeover or morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPCO (Setback/Warm up Module [Green]) and the ETPFVHM2 (Heat/Fan Module [Red]).

FV7105: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating electric (SSR) heat, summer/winter changeover and/or morning warm up. As space temperature drops, airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve reverses operation for changeover or morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPCO (Setback/Warm up Module [Green]) and the ETPFVHM3 (Heat/Fan Module [Red]).

FV7202: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with three stages of electric heat (On/Off) and night setback. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When system air is failed, the unit automatically switches into the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPSB (Setback/Warm up Module [Green]) and the ETPFVHM3 (Heat/Fan Module [Red]).

FV7203: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating hot water heat and night setback. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches into the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPSB (Setback/Warm up Module [Green]) and the ETPFVHM1 (Heat/Fan Module [Red]) and the ETPFVHM2 (Heat/Fan Module [Red]).

FV7204: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with floating modulating hot water heat and night setback. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches into the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPSB (Setback/Warm up Module [Green]) and the ETPFVHM2 (Heat/Fan Module [Red]).

FV7205: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating electric (SSR) heat and night setback. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches into the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPSB (Setback/Warm up Module [Green]) and the ETPFVHM3 (Heat/Fan Module [Red]).

FV7206: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with up to two stages of electric...
heat (On/Off) or hot water heat (two-position) and morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve opens to maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPH3 (Heat/Fan Module [Red]).

FV7302: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with three stages of electric heat (On/Off) and morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve opens to maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPH4 (Heat/Fan Module [Red]).

FV7303: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating hot water heat and morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve opens to maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPFVHM1 (Heat/Fan Module [Red]).

FV7304: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with floating modulating hot water heat and morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve opens to maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPFVHM2 (Heat/Fan Module [Red]).

FV7305: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating electric (SSR) heat and morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve opens to maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPFVHM3 (Heat/Fan Module [Red]).

FV7402: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with three stages of electric heat (On/Off), night setback and morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve opens to maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPW (Setback/Warm up Module [Green]) and the ETPFVHM1 (Heat/Fan Module [Red]).
SERIES 7000 • PARALLEL FLOW FAN POWERED

troller), ETPWSB (Setback/Warm up Module [Green]) and the ETPH4 (Heat/Fan Module [Red]).

FV7403: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating hot water heat, night setback and morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve opens to maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPWSB (Setback/Warm up Module [Green]) and the ETPFVHM1 (Heat/Fan Module [Red]).

FV7404: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with floating modulating hot water heat, night setback and morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve opens to maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPWSB (Setback/Warm up Module [Green]) and the ETPFVHM2 (Heat/Fan Module [Red]).

FV7405: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating electric (SSR) heat, night setback and morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve opens to maximum airflow setpoint for morning warm up. Air volume limits are located at the thermostat. Uses ETPM7 (Master Controller), ETPWSB (Setback/Warm up Module [Green]) and the ETPFVHM3 (Heat/Fan Module [Red]).

FV7501: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with up to two stages of electric heat (On/Off) or hot water heat (two-position), night setback, summer/winter changeover and/or morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve reverses operation for morning warm up. Air volume limits are located on the ETPECO Module. Uses ETPM7 (Master Controller), ETPECO (Flow Control Module [Blue]), ETPCOSB (Setback/Warm up Module [Green]) and the ETPH3 (Heat/Fan Module [Red]).

FV7502: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with three stages of electric heat (On/Off), night setback, summer/winter changeover and/or morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is energized in stages to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve opens to maximum airflow setpoint for morning warm up. Air volume limits are located on the ETPECO Module. Uses ETPM7 (Master Controller), ETPECO (Flow Control Module [Blue]), ETPCOSB (Setback/Warm up Module [Green]) and the ETPH3 (Heat/Fan Module [Red]).
remains closed and the unit fan and heat are cycled to maintain the night offset. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve reverses operation for morning warm up. Air volume limits are located on the ETPECO Module. Uses ETPM7 (Master Controller), ETPECO (Flow Control Module [Blue]), ETPCOSB (Setback/Warm up Module [Green]) and the ETPH4 (Heat/Fan Module [Red]).

FV7503: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with proportional modulating hot water heat, night setback, summer/winter changeover and/or morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve reverses operation for morning warm up. Air volume limits are located on the ETPECO Module. Uses ETPM7 (Master Controller), ETPECO (Flow Control Module [Blue]), ETPCOSB (Setback/Warm up Module [Green]) and the ETPFVHM1 (Heat/Fan Module [Red]).

FV7504: This application applies to Parallel Flow Fan Powered Terminals providing intermittent fan powered variable air volume with floating modulating hot water heat, night setback, summer/winter changeover and/or morning warm up. As space temperature drops, primary airflow is reset from maximum to minimum setpoint. As space temperature continues to drop, the unit fan is energized thus supplying plenum air to the space. On a further drop in space temperature, heat is modulated to satisfy the load. When system air is failed, the unit automatically switches to the night setback mode. The primary air valve remains closed and the unit fan and heat are cycled to maintain the night offset. When warm air is sensed by an electronic duct sensor, the unit fan and heat are de-energized and the primary air valve reverses operation for morning warm up. Air volume limits are located on the ETPECO Module. Uses ETPM7 (Master Controller), ETPECO (Flow Control Module [Blue]), ETPCOSB (Setback/Warm up Module [Green]) and the ETPFVHM3 (Heat/Fan Module [Red]).
700 TO 7000 CROSS REFERENCE GUIDE

SINGLE DUCT

<table>
<thead>
<tr>
<th>7000 Sequence</th>
<th>Old 700 Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD7000</td>
<td>SD701S</td>
<td>DT7100</td>
<td>DD701S</td>
<td>FC7001</td>
<td>FC701S</td>
<td>FV7001</td>
<td>FV701S</td>
</tr>
<tr>
<td></td>
<td>SD702S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD703S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD704S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD713S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD714S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD715S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD724S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD725S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD726S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SF703S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SF702S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DT700S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DT702S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7003</td>
<td>SD702SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD713SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD724SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7004</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7005</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7100</td>
<td>SD705S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7101</td>
<td>SD706S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD707S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD708S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD716S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD717S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD718S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7103</td>
<td>SD706SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD716SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7104</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7105</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7300</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7301</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7302</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7303</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7304</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7305</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7306</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7307</td>
<td>SD723R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7308</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7309</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7310</td>
<td>SD728R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7311</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7312</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7402</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7403</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7404</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7405</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD7406</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DUAL DUCT

<table>
<thead>
<tr>
<th>7000 Sequence</th>
<th>Old 700 Sequence</th>
<th>7000 Sequence</th>
<th>Old 700 Sequence</th>
<th>7000 Sequence</th>
<th>Old 700 Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT7100</td>
<td>DD701S</td>
<td>DT701S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SERIES FLOW

<table>
<thead>
<tr>
<th>7000 Sequence</th>
<th>Old 700 Sequence</th>
<th>7000 Sequence</th>
<th>Old 700 Sequence</th>
<th>7000 Sequence</th>
<th>Old 700 Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC7001</td>
<td>FC701S</td>
<td>FV7001</td>
<td>FV701S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PARALLEL FLOW

<table>
<thead>
<tr>
<th>7000 Sequence</th>
<th>Old 700 Sequence</th>
<th>7000 Sequence</th>
<th>Old 700 Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC7003</td>
<td>FC7020SM</td>
<td>FV7003</td>
<td>FV702SM</td>
</tr>
</tbody>
</table>

Johnson Controls
GENERAL NOTES
Since the actions below involve control signals, they must be done with a dry contact closure (contact closure cannot be paralleled from terminal to terminal):

CLOSE DAMPER
To close the air valve, open ETPM7 terminal 6 to thermostat terminal 5.

Open Application: Could be used during smoke sequences to isolate different areas.

OPEN DAMPER
To open the air valve fully, short ETPM7 terminal 6 to ETPM7 terminal 7.

Open Application: Could be used by airside test and balance to set CFM of the air handler.

OPEN AIR VALVE TO MAXIMUM CFM SETPOINT
To open the air valve to maximum CFM setpoint, disable heat and disable VFR fan (if applicable), short ETPH terminal 5 to ETPH terminal 7 (if present) or ETPM7 terminal 7.

Open Application: Could be used during airside test and balance.

DISABLE HEAT
To disable heat and heating minimum (SD only), short ETPM7 terminal 4 to ETPM7 terminal 7.

Open Application: Could be used if boiler is off and you don’t want the VAV terminals to go into heating mode.

CONNECTING MORE THAN ONE BOX TO A THERMOSTAT
To operate up to four air terminals from one thermostat, wire first terminal to thermostat per sequence diagram. Parallel connector terminals 5 (if present), 6 and 7 to other air terminals. Do not connect connector terminal 8’s together as serious damage will result. Since balancing is performed at the thermostat, all air terminals should be balanced with same voltages. In addition, for best results, all air terminals connected for this application should be the same size.

Open Application: Could be used in open area where one thermostat could sense general temperature and control several air terminals in unison.